Abstract

The article proposes a family of exact solutions to the Navier–Stokes equations for describing isobaric inhomogeneous unidirectional fluid motions. Due to the incompressibility equation, the velocity of the inhomogeneous Couette flow depends on two coordinates and time. The expression for the velocity field has a wide functional arbitrariness. This exact solution is obtained by the method of separation of variables, and both algebraic operations (additivity and multiplicativity) are used to substantiate the importance of modifying the classical Couette flow. The article contains extensive bibliographic information that makes it possible to trace a change in the exact Couette solution for various areas of the hydrodynamics of a Newtonian incompressible fluid. The fluid flow is described by a polynomial depending on one variable (horizontal coordinate). The coefficients of the polynomial functionally depend on the second (vertical) coordinate and time; they are determined by a chain of the simplest homogeneous and inhomogeneous partial differential parabolic-type equations. The chain of equations is obtained by the method of undetermined coefficients after substituting the exact solution into the Navier–Stokes equation. An algorithm for integrating a system of ordinary differential equations for studying the steady motion of a viscous fluid is presented. In this case, all the functions defining velocity are polynomials. It is shown that the topology of the vorticity vector and shear stresses has a complex structure even without convective mixing (creeping flow).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.