Abstract

Recent studies have revealed that multisoliton solutions of the nonlinear Schrödinger equation, as carriers of information, offer a promising solution to the problem of nonlinear signal distortions in fiber optic channels. In any nonlinear Fourier transform based transmission methodology seeking to modulate the discrete spectrum of the multisolitons, choice of an appropriate windowing function is an important design issue on account of the unbounded support of such signals. Here, we consider the rectangle function as the windowing function for the multisolitonic signal and provide a recipe for computing the exact solution of the associated Zakharov–Shabat (ZS) scattering problem for the windowed/doubly-truncated multisoliton potential. The idea consists in expressing the Jost solution of the doubly-truncated multisoliton potential in terms of the Jost solution of the original potential. The proposed method allows us to avoid prohibitive numerical computations normally required in order to accurately quantify the effect of time-domain windowing on the nonlinear Fourier spectrum of the multisolitonic signals. Further, the method devised in this work also applies to general type of signals admissible as ZS scattering potential, and, may prove to be a useful tool in the theoretical analysis of such systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.