Abstract
The off-diagonal Bethe ansatz method is generalized to the integrable model associated with the sp(4) (or C2) Lie algebra. By using the fusion technique, we obtain the complete operator product identities among the fused transfer matrices. These relations, together with some asymptotic behaviors and values of the transfer matrices at certain points, enable us to determine the eigenvalues of the transfer matrices completely. For the periodic boundary condition case, we recover the same T − Q relations obtained via conventional Bethe ansatz methods previously, while for the off-diagonal boundary condition case, the eigenvalues are given in terms of inhomogeneous T − Q relations, which could not be obtained by the conventional Bethe ansatz methods. The method developed in this paper can be directly generalized to generic sp(2n) (i.e., Cn) integrable model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.