Abstract

We present an analytic representation of an exact solution of the Navier–Stokes equations that describe flows of a rotating horizontal layer of a liquid with rigid and thermally isolated bottom and a free upper surface. On the upper surface, a constant tangential stress of an external force is given, and heat emission governed by the Newton law occurs. The temperature of the medium over the surface of the liquid is a linear function of horizontal coordinates. We find the solution of the boundary-value problem for ordinary differential equations for the velocity and temperature. and examine its form depending on the Taylor, Grashof, Reynolds, and Biot numbers. In rotating liquid, the motion is helical; account of the inhomogeneity of the temperature makes the helical motion more complicated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.