Abstract
Specific modifications of the usual canonical commutation relations between position and momentum operators have been proposed in the literature in order to implement the idea of the existence of a minimal observable length. Here, we study a consequence of this proposal in relativistic quantum mechanics by solving in the momentum space representation the Klein–Gordon oscillator in arbitrary dimensions. The exact bound states spectrum and the corresponding momentum space wave function are obtained. Following Chang et al. (Phys. Rev. D 65 (2002) 125027), we discuss constraint that can be placed on the minimal length by measuring the energy levels of an electron in a penning trap.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.