Abstract

The systematic design of exact optimal designs of experiments is typically challenging, as it results in nonconvex optimization problems. The literature on the computation of model-based exact optimal designs of experiments via mathematical programming, when the covariates are categorical variables, is still scarce. We propose mixed-integer semidefinite programming formulations, to find exact D-, A- and I-optimal designs for linear models, and locally optimal designs for nonlinear models when the design domain is a finite set of points. The strategy requires: (i) the generation of a set of candidate treatments; (ii) the formulation of the optimal design problem as a mixed-integer semidefinite program; and (iii) its solution, employing appropriate solvers. For comparison, we use semidefinite programming-based formulations to find equivalent approximate optimal designs. We demonstrate the application of the algorithm with various models, considering both unconstrained and constrained setups. Equivalent approximate optimal designs are used for comparison.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.