Abstract
This article focuses on the exact null controllability of a one-dimensional wave equation in noncylindrical domains. Both the fixed endpoint and the moving endpoint are Neumann-type boundary conditions. The control is put on the moving endpoint. When the speed of the moving endpoint is less than the characteristic speed, we can obtain the exact null controllability of this equation by using the Hilbert uniqueness method. In addition, we get a sharper estimate on controllability time that depends on the speed of the moving endpoint.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.