Abstract

In this article, the simple step-stress model is considered based on generalized Type-I hybrid censored data from the exponential distribution. The maximum likelihood estimators (MLEs) of the unknown parameters are derived assuming a cumulative exposure model. We then derive the exact distributions of the MLEs of the parameters using conditional moment generating functions. The Bayesian estimators of the parameters are derived and then compared with the MLEs. We also derive confidence intervals for the parameters using these exact distributions, asymptotic distributions of the MLEs, Bayesian, and the parametric bootstrap methods. The problem of determining the optimal stress-changing point is discussed and the MLEs of the pth quantile and reliability functions at the use condition are obtained. Finally, Monte Carlo simulation and some numerical results are presented for illustrating all the inferential methods developed here.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.