Abstract

A notion of $L^p$ -exact controllability is introduced for linear controlled (forward) stochastic differential equations with random coefficients. Several sufficient conditions are established for such kind of exact controllability. Further, it is proved that the $L^p$ -exact controllability, the validity of an observability inequality for the adjoint equation, the solvability of an optimization problem, and the solvability of an $L^p$ -type norm optimal control problem are all equivalent.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.