Abstract
Relying only on the classical Bahadur–Rao approximation for large deviations (LDs) of univariate sample means, we derive strong LD approximations for probabilities involving two sets of sample means. The main result concerns the exact asymptotics (asn→∞) of$$ {\open P}\left({\max_{i\in\{1,\ldots,d_x\}}\bar X_{i,n} \les \min_{i\in\{1,\ldots,d_y\}}\bar Y_{i,n}}\right),$$with the${\bar X}_{i,n}{\rm s}$(${\bar Y}_{i,n}{\rm s}$, respectively) denotingdx(dy) independent copies of sample means associated with the random variableX(Y). Assuming${\open E}X \gt {\open E}Y$, this is a rare event probability that vanishes essentially exponentially, but with an additional polynomial term. We also point out how the probability of interest can be estimated using importance sampling in a logarithmically efficient way. To demonstrate the usefulness of the result, we show how it can be applied to compare the order statistics of the sample means of the two populations. This has various applications, for instance in queuing or packing problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Probability in the Engineering and Informational Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.