Abstract

We consider a diffusing particle in one dimension that is subject to a time-dependent drift or potential field. A reflecting barrier constrains the particle's position to the half-line X ≥ 0. Such models arise naturally in the study of queues with time-dependent arrival rates, as well as in advection-diffusion problems of mathematical physics. We solve for the probability distribution of the particle as a function of space and time. Then we do a detailed study of the asymptotic properties of the solution, for various ranges of space and time. We also relate our asymptotic results to those obtained by probabilistic approaches, such as central limit theorems and large deviations. We consider drifts that are either piecewise constant or linear functions of time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.