Abstract

By defining new dimensionless variables, nonlinear mathematical models for one-dimensional flow with unknown moving boundaries in semi-infinite porous media are modified to be solved analytically. The exact analytical solutions for both constant-rate and constant-pressure inner boundary constraint problems are obtained by applying the Green's function. Two transcendental equations for moving boundary problems are obtained and solved using the Newton-Raphson iteration. The exact analytical solutions are then compared with the approximate solutions. The Pascal's approximate formula in reference is fairly accurate for the moving boundary development under the constant-rate condition. But another Pascal's approximate formula given in reference is not very robust for constant-pressure condition problems during the early production period, and could lead to false results at the maximum moving boundary distance. Our results also show that, in presence of larger TPG, more pressure drop is required to maintain a constant-rate production. Under the constant-pressure producing condition, the flow rate may decline dramatically due to a large TPG. What's more, there exists a maximum distance for a given TPG, beyond which the porous media is not disturbed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.