Abstract

The quadratic linear ordering problem naturally generalizes various optimization problems such as bipartite crossing minimization or the betweenness problem, which includes linear arrangement. These problems have important applications, e.g., in automatic graph drawing and computational biology. We present a new polyhedral approach to the quadratic linear ordering problem that is based on a linearization of the quadratic objective function. Our main result is a reformulation of the 3-dicycle inequalities using quadratic terms. After linearization, the resulting constraints are shown to be face-inducing for the polytope corresponding to the unconstrained quadratic problem. We use this result both within a branch-and-cut algorithm and within a branch-and-bound algorithm based on semidefinite programming. Experimental results for bipartite crossing minimization show that this approach clearly outperforms other methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.