Abstract

Objective: Current treatments for blast-induced lung injury are limited to supportive procedures including mechanical ventilation. The study aimed to investigate the role of post-trauma-induced oedema generation in the function of time and trauma intensity and the probable role of beta 2-adrenergic receptors (β2-ARs) agonists on pulmonary oedema. The study is conducted using an ex vivo model after an experimental in vivo blast-induced thorax trauma in rats. Methods: Rats were randomised and divided into two groups, blast and sham. The blast group were anaesthetised and exposed to the blast wave (3.16 ± 0.43 bar) at a distance of 3.5 cm from the thorax level. The rats were sacrificed 10 min after the blast, the lungs explanted and treated with terbutaline, formoterol, propranolol or amiloride to assess the involvement of sodium transport. Other groups of rats were exposed to distances of 5 and 7 cm from the thorax to reduce the intensity of the injury. Further, one group of rats was studied after 180 min and one after 360 min after a 3.5 cm blast injury. Sham controls were exposed to identical procedures except for receiving blast overpressure. Results: Lung injury and oedema generation depended on time after injury and injury intensity. Perfusion with amiloride resulted in a further increase in oedema formation as indicated by weight gain (p < 0.001), diminished tidal volume (Tv) (p < 0.001), and increased airway resistance (p < 0.001). Formoterol caused a significant increase in the Tv (p < 0.001) and a significant decrease in the airway resistance (p < 0.01), while the lung weight was not influenced. Trauma-related oedema was significantly reduced by terbutaline in terms of lung weight gain (p < 0.01), Tv (p < 0.001), and airway resistance (p < 0.01) compared to control blast-injured lungs. Terbutaline-induced effects were completely blocked by the β-receptor antagonist propranolol (p < 0.05). Similarly, amiloride, which was added to terbutaline perfusion, reversed terbutaline-induced weight gain reduction (p < 0.05). Conclusions: β2-adrenoceptor stimulation had a beneficial impact by amiloride-dependent sodium and therefore, fluid transport mechanisms on the short-term ex vivo oedema generation in a trauma-induced in vivo lung injury of rats.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.