Abstract

IntroductionCongenital human cytomegalovirus (HCMV) infection is a major public health problem due to severe sequelae in the fetus and newborns. Currently, due to their toxicity anti-CMV treatments cannot be administered to pregnant women. We thus developed an ex vivo model of 1st trimester placental CMV infection to observe the route of infection across the placenta and to test the efficacy of various new drugs targeting different stages of viral cycle. MethodsAfter validation of the viability of floating villi explants by ELISA β-HCG, the kinetics of placental infection were determined by immunochemistry and qPCR in this ex vivo model. Antiviral susceptibility was determined in vitro using focus reduction assay and by qPCR in the ex vivo model. ResultsThe ex vivo model showed viral infection in trophoblasts and mesenchymal space of floating villi. In vitro, antiviral combinations of maribavir with baïcalein or artesunate inhibited viral infection by more than 90%. On the other hand, in ex vivo model, infection was reduced by 40% in presence of maribavir and artesunate. The synergistic effect observed in vitro was not observed ex vivo. DiscussionThis model allowed us to understand the CMV spread in 1st trimester floating villi better and to analyze the anti-CMV efficacy and toxicity of new drugs that could be administered to pregnant women, either alone or in combination. ConclusionsSuch an ex vivo model could be applied to other viruses such as rubella or parvovirus B19 and in new drug development.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.