Abstract

In this paper releases of radionuclides and the production of aerosols during the molten core/concrete interaction (MCCI) phase of degraded core accidents in light water reactors are termed ex-vessel releases. The VANESA and METOXA codes were respectively developed by the U.S. Nuclear Regulatory Commission and the Industrial Degraded Core Rulemaking (IDCOR) program to quantify ex-vessel releases. Comparison of calculations by VANESA and METOXA (under identical initial and boundary conditions) show that except for niobium and strontium species, the predicted ex-vessel radionuclide release rates are within an order of magnitude of each other. In an actual application of these two codes to the source term quantification of severe accidents, the initial and boundary conditions for the calculations could be significantly different, as demonstrated in an analysis of an anticipated transient without scram accident sequence in a boiling water reactor. For the same amount of debris, the MCCI thermal-hydraulic results provided for METOXA from a DECOMP calculation tend to drive more radioactive material from the debris pool than those provided for VANESA from a CORCON/MOD2 calculation. The MAAP code, however, predicts that less mass is involved in the MCCI.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.