Abstract

Access to time delay in a projectile-target scattering is a fundamental tool in understanding their interactions by probing the temporal domain. The present study focuses on computing and analyzing the Eisenbud-Wigner-Smith (EWS) time delay in low energy elastic e−C60 scattering. The investigation is carried out in the framework of a non-relativistic partial wave analysis (PWA) technique. The projectile-target interaction is described in (i) Density Functional Theory (DFT) and (ii) Annular Square Well (ASW) static model, and their final results are compared in details. The impact of polarization on resonant and non-resonant time delay is also investigated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.