Abstract
A new method for query expansion using genetic programming (GP) is proposed in this paper to enhance the retrieval performance of text information retrieval systems. Using a set of queries and retrieved relevant and nonrelevant documents corresponding to each query, GP tries to evolve a criteria for selecting terms which when added to the original query improve the next retrieved set of documents. Two experiments are conducted to evaluate the proposed method over three standard datasets: Cranfield, Lisa and Medline. In first experiment a formula is evolved using GP over a training set and is then evaluated over a test query set of the same dataset. In the second experiment, evolved expansion formula over a dataset is evaluated over a different dataset. We compared our method against the base probabilistic method in literature. Results show a higher performance in comparison with original and probabilistically expanded method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.