Abstract
The discovery of scientific formulae that parsimoniously explain natural phenomena and align with existing background theory is a key goal in science. Historically, scientists have derived natural laws by manipulating equations based on existing knowledge, forming new equations, and verifying them experimentally. However, this does not include experimental data within the discovery process, which may be inefficient. We propose a solution to this problem when all axioms and scientific laws are expressible as polynomials and argue our approach is widely applicable. We model notions of minimal complexity using binary variables and logical constraints, solve polynomial optimization problems via mixed-integer linear or semidefinite optimization, and prove the validity of our scientific discoveries in a principled manner using Positivstellensatz certificates. We demonstrate that some famous scientific laws, including Kepler’s Law of Planetary Motion and the Radiated Gravitational Wave Power equation, can be derived in a principled manner from axioms and experimental data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.