Abstract

Network science provides a powerful tool for unraveling the complexities of social, technological and biological systems. Constructing networks using wave phenomena is also of great interest in devising advanced hardware for machine learning, as shown in optical neural networks. Although most wave-based networks have employed static network models, the impact of evolving models in network science provides strong motivation to apply dynamical network modeling to wave physics. Here the concept of evolving scattering networks for scattering phenomena is developed. The network is defined by links, node degrees and their evolution processes modeling multi-particle interferences, which directly determine scattering from disordered materials. I demonstrate the concept by examining network-based material classification, microstructure screening and preferential attachment in evolutions, which are applied to stealthy hyperuniformity. The results enable independent control of scattering from different length scales, revealing superdense material phases in short-range order. The proposed concept provides a bridge between wave physics and network science to resolve multiscale material complexities and open-system material design.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.