Abstract

Abstract The purpose of this study was to develop an algorithm for automated muscle fatigue detection in sports related scenarios. Surface electromyography (sEMG) of the biceps muscle was recorded from ten subjects performing semi-isometric (i.e., attempted isometric) contraction until fatigue. For training and testing purposes, the signals were labelled in two classes (Non-Fatigue and Fatigue), with the labelling being determined by a fuzzy classifier using elbow angle and its standard deviation as inputs. A genetic algorithm was used for evolving a pseudo-wavelet function for optimising the detection of muscle fatigue on any unseen sEMG signals. Tuning of the generalised evolved pseudo-wavelet function was based on the decomposition of twenty sEMG trials. After completing twenty independent pseudo-wavelet evolution runs, the best run was selected and then tested on ten previously unseen sEMG trials to measure the classification performance. Results show that an evolved pseudo-wavelet improved the classification of muscle fatigue between 7.31% and 13.15% when compared to other wavelet functions, giving an average correct classification of 88.41%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.