Abstract

Abstract High-energy milling technique was used to synthesize Al–10 wt.%AlN-nanostructured composite powder in a planetary ball-mill under argon atmosphere up to 25 h. To show the role of AlN particles, process was conducted for monolithic aluminum. The changes in powder characteristics were investigated by time. Microstructure of powders was studied after different milling times by scanning electron microscope (SEM). The morphological evolutions showed that relative equiaxed powder could be synthesized after 25 h milling. Structural analysis was performed by X-ray diffraction method (XRD) to determine the grain sizes and lattice strain. Furthermore, particle size analysis (PSA) revealed the distribution curvatures. The compressibility behavior of milled powders was studied at different compaction pressures which involve the rearrangement and plastic deformation stages. The modified Heckel equation was used to consider the pressure effect on yield strength as well as reinforcing role of hard AlN particles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.