Abstract

The vertebral column is critical to a vertebrate species' flexibility and skeletal support, making vertebrae a clear target for selection. Anurans (frogs and toads) have a unique, truncated vertebral column that appears constrained to provide axial rigidity for efficient jumping. However, no study has examined how presacral vertebrae shape varies among anuran species at the macroevolutionary scale nor how intrinsic (developmental and phylogenetic) and extrinsic (ecological) factors may have influenced vertebrae shape evolution. We used microCT scans and phylogenetic comparative methods to examine the vertebrae of hundreds of anuran species that vary in body size as well as adult and larval ecology. We found variation in shape and evolutionary rates among anuran vertebrae, dispelling any notion that trunk vertebrae evolve uniformly. We discovered the highest evolutionary rates in the cervical vertebrae and in the more caudal trunk vertebrae. We found little evidence for selection pressures related to adult or larval ecology affecting vertebrae evolution, but we did find body size was highly associated with vertebrae shape and microhabitat (mainly burrowing) affected those allometric relationships. Our results provide an interesting comparison to vertebrae evolution in other clades and a jumping-off point for studies of anuran vertebrae evolution and development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.