Abstract

The development of a large noncoding fraction in eukaryotic DNA and the phenomenon of the code bloat in the field of evolutionary computations show a striking similarity. This seems to suggest that (in the presence of mechanisms of code growth) the evolution of a complex code cannot be attained without maintaining a large inactive fraction. To test this hypothesis we performed computer simulations of an evolutionary toy model for Turing machines, studying the relations among fitness and coding versus noncoding ratio while varying mutation and code growth rates. The results suggest that, in our model, having a large reservoir of noncoding states constitutes a great (long term) evolutionary advantage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.