Abstract

Many real-world optimization problems have more than three objectives, which has triggered increasing research interest in developing efficient and effective evolutionary algorithms for solving many-objective optimization problems. However, most many-objective evolutionary algorithms have only been evaluated on benchmark test functions and few applied to real-world optimization problems. To move a step forward, this paper presents a case study of solving a many-objective hybrid electric vehicle controller design problem using three state-of-the-art algorithms, namely, a decomposition based evolutionary algorithm (MOEA/D), a non-dominated sorting based genetic algorithm (NSGA-III), and a reference vector guided evolutionary algorithm (RVEA). We start with a typical setting aimed at approximating the Pareto front without introducing any user preferences. Based on the analyses of the approximated Pareto front, we introduce a preference articulation method and embed it in the three evolutionary algorithms for identifying solutions that the decision-maker prefers. Our experimental results demonstrate that by incorporating user preferences into many-objective evolutionary algorithms, we are not only able to gain deep insight into the trade-off relationships between the objectives, but also to achieve high-quality solutions reflecting the decision-maker's preferences. In addition, our experimental results indicate that each of the three algorithms examined in this work has its unique advantages that can be exploited when applied to the optimization of real-world problems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.