Abstract
Biological data objects often have both of the following features: (i) they are functions rather than single numbers or vectors, and (ii) they are correlated owing to phylogenetic relationships. In this paper, we give a flexible statistical model for such data, by combining assumptions from phylogenetics with Gaussian processes. We describe its use as a non-parametric Bayesian prior distribution, both for prediction (placing posterior distributions on ancestral functions) and model selection (comparing rates of evolution across a phylogeny, or identifying the most likely phylogenies consistent with the observed data). Our work is integrative, extending the popular phylogenetic Brownian motion and Ornstein-Uhlenbeck models to functional data and Bayesian inference, and extending Gaussian process regression to phylogenies. We provide a brief illustration of the application of our method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.