Abstract

The G -function formalism has been widely used in the context of evolutionary games for identifying evolutionarily stable strategies (ESS). This formalism was developed for and applied to point processes. Here, we examine the G -function formalism in the settings of spatial evolutionary games and strategy dynamics, based on reaction-diffusion models. We start by extending the point process maximum principle to reaction-diffusion models with homogeneous, locally stable surfaces. We then develop the strategy dynamics for such surfaces. When the surfaces are locally stable, but not homogenous, the standard definitions of ESS and the maximum principle fall apart. Yet, we show by examples that strategy dynamics leads to convergent stable inhomogeneous strategies that are possibly ESS, in the sense that for many scenarios which we simulated, invaders could not coexist with the exisiting strategies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.