Abstract

The 3' terminal nucleotide of several human small RNAs, including Signal Recognition Particle (SRP) RNA, 7SK RNA, U2 small nuclear RNA and ribosomal 5S RNA was previously characterized and a fraction of these RNAs was found to contain a single post-transcriptionally added adenylic acid residue on their 3' ends. Here we report the development of a reverse transcription-polymerase chain reaction (RT-PCR) assay for determining and quantifying the extent of post-transcriptional adenylation of RNAs from different species. Using this assay, we found that a fraction of S. cerevisiae U2 small nuclear RNA and S. cerevisiae SRP RNA contain a post-transcriptionally added adenylic acid residue on their 3' ends. Sequencing analysis confirmed this adenylation to be post-transcriptional. Corresponding small RNAs in Xenopus oocytes also contained this post-transcriptional adenylation on their 3' ends. These data show that post-transcriptional adenylation on the 3' end of several small RNA molecules is conserved through evolution. Xenopus SRP RNA from both cytoplasmic and nuclear compartments contained post-transcriptionally added adenylic acid residue on its 3' end. In addition, the Alu portion of SRP RNA was adenylated, when injected into the cytoplasm of frog oocytes. These data show that this novel adenylating machinery, capable of specifically adding a single adenylic acid to the 3' end of some RNA molecules, is present and functional in both nucleus and cytoplasm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.