Abstract

BackgroundLoopin-1 is an abundant, male germ line specific protein of Drosophila melanogaster. The polyclonal antibody T53-F1 specifically recognizes Loopin-1 and enables its visualization on the Y-chromosome lampbrush-like loop named kl-3 during primary spermatocyte development, as well as on sperm tails. In order to test lampbrush-like loop evolutionary conservation, extensive phase-contrast microscopy and immunostaining with T53-F1 antibody was performed in other drosophilids scattered along their genealogical tree.ResultsIn the male germ line of all species tested there are cells showing giant nuclei and intranuclear structures similar to those of Drosophila melanogaster primary spermatocytes. Moreover, the antibody T53-F1 recognizes intranuclear structures in primary spermatocytes of all drosophilids analyzed. Interestingly, the extent and conformation of the staining pattern is species-specific. In addition, the intense staining of sperm tails in all species suggests that the terminal localization of Loopin-1 and its orthologues is conserved. A comparison of these cytological data and the data coming from the literature about sperm length, amount of sperm tail entering the egg during fertilization, shape and extent of both loops and primary spermatocyte nuclei, seems to exclude direct relationships among these parameters.ConclusionTaken together, the data reported strongly suggest that lampbrush-like loops are a conserved feature of primary spermatocyte nuclei in many, if not all, drosophilids. Moreover, the conserved pattern of the T53-F1 immunostaining indicates that a Loopin-1-like protein is present in all the species analyzed, whose localization on lampbrush-like loops and sperm tails during spermatogenesis is evolutionary conserved.

Highlights

  • Loopin-1 is an abundant, male germ line specific protein of Drosophila melanogaster

  • The conserved pattern of the T53-F1 immunostaining indicates that a Loopin-1-like protein is present in all the species analyzed, whose localization on lampbrush-like loops and sperm tails during spermatogenesis is evolutionary conserved

  • Phase-contrast analysis In order to study the evolutionary conservation of lampbrush-like loops among drosophilids, a detailed cytological analysis of male meiosis was carried out using phase-contrast microscopy in 13 species (Table 1)

Read more

Summary

Introduction

Loopin-1 is an abundant, male germ line specific protein of Drosophila melanogaster. The polyclonal antibody T53-F1 recognizes Loopin-1 and enables its visualization on the Y-chromosome lampbrush-like loop named kl-3 during primary spermatocyte development, as well as on sperm tails. In order to test lampbrush-like loop evolutionary conservation, extensive phasecontrast microscopy and immunostaining with T53-F1 antibody was performed in other drosophilids scattered along their genealogical tree. At the tip of Drosophila testis a group of 8–9 staminal cells mitotically divide forming another staminal cell and a primary spermatogonium. Primary spermatogonia divide four times producing, after the last division, sixteen primary spermatocytes. Primary spermatocytes undergo a relatively long (~90 hours) maturation phase, during which they slowly increase their nuclear volume so that by the end of the growth phase they are 25–30 times larger than spermatogonia. Meiosis produces 64 haploid spermatids which are (page number not for citation purposes)

Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.