Abstract

Extensive biometrical and statistically oriented studies in segregation and pedigree analyses reflect current efforts to demonstrate major gene factors playing a significant role for a whole hierarchy of multifactorial diseases and related risk factors exhibiting continuous variation. The evolutionary aspects of the changes in gene frequencies of some major gene one locus models admitting a broad range of genotype-phenotype associations and different forms of selection functions are investigated. The flexibility of differences among the genotypic-phenotypic distribution can take account of variable penetrance expressivity, complex multifarious heterogeneous background effects, or partial dominance concepts. The phenotype distribution and selection function are assumed to be time invariant such that the environments with which the population interacts do not depend on either the phenotypes or the genotypes present in the population of any particular generation. Viability selection optimizing or directional acts on the phenotypic level. We consider random mating, and concentrate mostly on evaluating the nature of the equilibrium structure for the cases of “strong” and “weak” selection. For weak stabilizing selection the determinants of superior genotypic fitness in the class of phenotypic symmetric distributions reside in minimizing a combination of the phenotypic variance and the deviation of the phenotypic mean from the optimal phenotype. With equal means of central phenotype values, a canalizing selection effect signifying fitness superiority for the genotype with minimal variance is in force. For strong stabilizing selection the genotype-phenotype density at the optimal value determines the relative genotype fitness value. For directional selection the determinants of the selection realizations depend on a “standardized” deviation of the mean phenotype distributional value relative to its total variance. The effects of symmetry as against asymmetry in the genotype distributions with prescribed means and variances were investigated by numerical computations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.