Abstract
A method of wavefront analysis is used to study the formation of shock waves in a two-dimensional steady supersonic flow of a non-ideal radiating gas past plane and axisymmetric bodies. The gas is taken to be sufficiently hot for the effect of thermal radiation to be significant, which is, of course, treated by the optically thin approximation to the radiative transfer equation. Transport equations, which lead to the determination of the shock formation distance and also to conditions which insure that no shock will ever evolve on the wavefront, is derived. The influence of the parameter of the non-idealness, upstream flow Mach number in the presence of thermal radiation on the behavior of the wavefront are examined.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Communications in Nonlinear Science and Numerical Simulation
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.