Abstract

Vortex excitations and creep regimes in YBa2Cu3O7 (YBCO) films with nonsuperconducting nanorods (columnar defects) and/or nanoparticles in a low external magnetic field H oriented perpendicular to the film surface have been identified using standard DC magnetization relaxation measurements. It was found that by increasing the pinning energy dispersion through nanoparticle addition the relevant changes in the temperature T variation of the normalized magnetization relaxation rate S appear at relatively high temperatures (T∼65K for H=2kOe), owing to the inhibition of double vortex-kink formation. This indicates that the often observed S(T) maximum at low T (around 30K) is not related to the excitation of double vortex kinks and super-kinks in specimens with columnar defects, as previously believed. The low-T S(T) maximum is present in the case of strongly pinned specimens without nanorods, as well, and depends on the film thickness, which definitely shows that it is caused by thermo-magnetic instabilities, as recently suggested.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.