Abstract

Thin antimony layers adsorbed on bismuth selenide () present an exciting topological insulator system. Much recent effort has been made to understand the synthesis and electronic properties of the heterostructure, particularly the migration of the topological surface states under adsorption. However, the intertwinement of the topological surface states of the pristine substrate with the Sb adlayer remains unclear. In this theoretical work, we apply density functional theory (DFT) to model heterostructures of single and double atomic layers of Sb on a bismuth selenide substrate. We thereby discuss established and alternative structural models, as well as the hybridization of topological surface states with the Sb states. Concerning the geometry, we reveal the possibility of structures with inverted Sb layers which are energetically close to the established ones. The formation energy differences are below 10 meV/atom. Concerning the hybridization, we trace the band structure evolution as a function of the adlayer-substrate distance. By following changes in the connection between the Kramers pairs, we extract a series of topological phase transitions. This allows us to explain the origin of the complex band structure, and ultimately complete our knowledge about this peculiar system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.