Abstract

Precipitation and streamwater were analysed weekly for δ18O in seven tributaries and five main stem sites of a 2100 km2 catchment; >60% of it is upland in character. Precipitation δ18O followed seasonal patterns ranging from –20‰ in winter to –4‰ in summer. Seasonality was also evident in stream waters, though much more damped. Mean transit times (MTTs) were estimated using δ18O input–output relationships in a convolution integral with a gamma distribution. The MTTs were relatively similar (528–830 days): tributaries exhibited a greater range, being shorter in catchments with montane topography and hydrologically responsive soils, and longer where catchments have significant water storage. Along the main stem, MTTs increased modestly from 621 to 741 days. This indicates that montane headwaters are the dominant sources of runoff along the main stem of the river system. Models suggest that around 10% of runoff has transit times of less than two weeks during higher flows whilst older (>10-year old) water sustains low flows contributing around 5% of runoff. Citation Speed, M., Tetzlaff, D., Hrachowitz, M. & Soulsby, C. (2011) Evolution of the spatial and temporal characteristics of the isotope hydrology of a montane river basin. Hydrol. Sci. J. 56(3), 426–442

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.