Abstract

Al 0.3Ga 0.7As/GaAs Quantum Well structures were grown by molecular beam epitaxy (MBE) on a 500 nm thick GaAs buffer layer subjected to the following surface processes: a) in-situ Cl 2 etching at 70 °C and 200 °C, b) air-exposure for 30 min. The characteristics of these samples were compared to those of a continuously grown sample with no processing (control sample). We obtained the quantum wells energy transitions using photoreflectance spectroscopy as a function of the temperature (8–300 K), in the range of 1.2 to 2.1 eV. The sample etched at 200 °C shows a larger intensity of the quantum well peaks in comparison to the others samples. We studied the temperature dependence of the excitonic energies in the quantum wells (QWs) as well as in GaAs using three different models; the first one proposed by Varshni [4], the second one by Viña et al. [5], and the third one by Pässler and Oelgart [6]. The Pässler model presents the best fitting to the experimental data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.