Abstract

Aquifers consisting of unconsolidated sediments in the coastal area near Zhanjiang in southern China are grouped into the shallow, middle-deep and deep aquifer systems. Groundwater exploitation began in the 1950s in this district and has increased from year to year since 1980. Measurements of groundwater levels and monitoring data of groundwater chemistry at some 60 wells since 1981 are examined to analyze the evolution of hydrodynamics and hydrochemistry in the coastal aquifers. The results indicate that groundwater levels in the middle-deep and deep aquifer systems have fallen continuously and the extents of the depression cones in water levels have increased in the past two decades, even though the water levels recovered to some degree during the period of 1997–2001. In 2004, the lowest water levels in the middle-deep and deep aquifer systems were 23.58 and 21.84 m below sea level, respectively. The groundwater has TDS ranging from 40 to 550 mg/L, and is of low pH, commonly varies between 4 and 7. Concentrations of total iron and manganese exceed the concentration limits of the drinking water standards. The hardness is in the range of 10–250 mg/L. Chloride contents of the groundwater range from 10 to 60 mg/L. The chloride and TDS do not show systematically increasing trends. Although the water levels in the exploitation center near the coast are significantly lower than the sea level and the depression cones of water levels in the middle-deep and deep aquifer systems have expanded to the sea, sea water intrusion has not been observed until recently. This phenomenon is quite unique in the coastal area near Zhanjiang.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.