Abstract
The gelsolin gene family encodes a number of higher eukaryotic actin-binding proteins that are thought to function in the cytoplasm by severing, capping, nucleating or bundling actin filaments. Recent evidence, however, suggests that several members of the gelsolin family may have adopted unexpected nuclear functions including a role in regulating transcription. In particular, flightless I, supervillin and gelsolin itself have roles as coactivators for nuclear receptors, despite the fact that their divergence appears to predate the evolutionary appearance of nuclear receptors. Flightless I has been shown to bind both actin and the actin-related BAF53a protein, which are subunits of SWI/SNF-like chromatin remodelling complexes. The primary sequences of some actin-related proteins such as BAF53a exhibit conservation of residues that, in actin itself, are known to interact with gelsolin-related proteins. In summary, there is a growing body of evidence supporting a biological role in the nucleus for actin, Arps and actin-binding proteins and, in particular, the gelsolin family of actin-binding proteins.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.