Abstract

The characteristic flow features of an elevated square jet in crossflow (EJICF) are studied numerically using large eddy simulation. The effect of jet to crossflow velocity ratio, also called velocity ratio (VR), on the flow field of an elevated jet in crossflow (EJICF) is investigated. All the computations are carried out at a Reynolds number (Re) of 20 000, based on the outer width of the stack (d) and free stream crossflow velocity (U∞), for four different velocity ratios (VR), namely, 0.5, 1.0, 1.5 and 2.0. The stack used in this study has an aspect ratio h/d = 7. The shear-improved Smagorinsky model has been used to account for the subgrid scale stress while solving the filtered three-dimensional unsteady Navier-Stokes equations. The modes of shedding in the stack wake are analyzed using both instantaneous and phase-averaged data. It is found that at a low jet to crossflow velocity ratio (VR = 0.5), the stack wake exhibits two different modes of shedding, symmetric and antisymmetric, similar to the wake of a wall mounted finite-size cylinder. At higher velocity ratios (VR ≥ 1), the stack wake shows the presence of only antisymmetric modes of shedding. It is also found that velocity ratio (VR) has a profound effect on the source of vorticity of the jet shear layer structures near the upwind side. At VR = 0.5, the upstream sides of the jet shear layer structures are found to draw their vortices from the outer surface of the stack boundary layer. At higher VR, they seem to be fed by the vorticity of the boundary layer developed on the inner wall surface of the stack. Both jet vortices and stack wake vortices are found to be present in the jet wake, and the shedding frequency of both the jet wake and the stack wake is found to be same. The spatial evolution of the counter-rotating vortex pair in the case of an EJICF is found to be similar to that of a JICF.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.