Abstract
Addition of Al-5Ti-1B alloy to molten aluminum alloys can refine α-Al grains effectively and thereby improve their strength and toughness. TiAl3 and TiB2 in Al-5Ti-1B alloy are the main secondary-phase particles for refinement, while the understanding on the effect of their sizes on α-Al grain refinement continues to be fragmented. Therefore, Al-5Ti-1B alloys with various sizes and morphologies of the secondary-phase particles were prepared by equal channel angular pressing (ECAP). Evolution of the secondary-phase particles during ECAP process and their impact on α-Al grain refinement were studied by X-ray diffraction and scanning electron microscope (SEM). Results show that during the ECAP process, micro-cracks firstly appeared inside TiAl3 particles and then gradually expanded, which resulted in continuous refinement of TiAl3 particles. In addition, micro-distribution uniformity of TiB2 particles was improved due to the impingement of TiAl3 particles to TiB2 clusters during deformation. Excessively large sizes of TiAl3 particles would reduce the number of effective heterogeneous nucleus and thus resulted in poor grain refinement effectiveness. Moreover, excessively small TiAl3 particles would reduce inhibitory factors for grain growth Q and weaken grain refinement effectiveness. Therefore, an optimal size range of 18–22μm for TiAl3 particles was suggested.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.