Abstract

Fluoride shuttle batteries (FSBs), which utilize defluorination of metal fluorides and fluorination of the resultant metals, are expected to have high energy densities. In situ Raman microscopy was conducted during FSB reactions of a nearly-2D cluster of orthorhombic BiF3 microparticles partly embedded in a gold-plated film (o-BiF3 /gold). At a high overpotential, defluorination of the surface of an o-BiF3 particle (or cluster) was almost completed within approximately 120 s. At a low over potential, defluorination proceeded from the contours of the cluster that was in contact with the gold to the center of the cluster, suggesting that the rate-limiting process was electronic diffusion. Conversely, fluorination proceeded uniformly at the surface of the cluster to form BiF3 with a cubic structure (c-BiF3 ). The results will lead to the establishment of a strategy for efficient use of active materials with low electronic and ionic conductivities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.