Abstract

The effects of rare earth elements (RE) addition on the pearlite microstructure in low-carbon microalloyed steels have been investigated under two heat treatment conditions: (1) a normalizing treatment (as a conventional heat treatment used industrially to obtain the final mechanical properties of such steels), and (2) an isothermal treatment at 650 °C. This research reports the following effects due to the addition of RE: (i) refinement of the nodule and colony size of pearlite along with the ferrite grain size in the normalized condition, without a significant change in the volume fraction of pearlite. This microstructural refinement observed at room temperature is a consequence of the refinement of cast and austenitic microstructures formed during cooling in the presence of RE; (ii) the interlamellar spacing of pearlite isothermally transformed at 650 °C, as observed by SEM and TEM, is effectively reduced in the RE-added steel. This is likely due to two different effects combined: (i) direct influence of RE on atom carbon diffusion; and (ii) pearlite growth being boundary diffusion controlled by RE partitioning.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.