Abstract

Low carbon bainitic steel derives the high strength mainly from high density of dislocations rather than carbon and alloy element content, so it tends to evolve into equilibrium microstructure with low density of dislocations under thermal disturbance. In the present investigation, granular bainite and lath-like bainitic ferrite were produced respectively in Mo-free low-carbon steels by changing cooling rate. It has been found that granular bainite possesses a lower strength at room temperature than bainitic ferrite, but it exhibits a slower decrease of strength with temperature increasing. Dislocation density in both granular bainite and bainitic ferrite decreases via recovery and recrystallization at high temperature. However, when reheating of bainite is carried out at temperature below 600 °C, a long time will be needed for incubation of recrystallization, during which the hardness of bainite maintains stable. The property makes bainite, especially granular bainite, become a potential microstructure for matrix of high strength fire-resistant steel.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.