Abstract

In the selective laser melting process (SLM), the region irradiated by the laser beam is melted and quickly solidified, forming solidification lines (laser scan tracks) with symmetrical shapes. Because of the unique (rapid) crystallization conditions, the subgrain structures, typically observed inside these solidification lines, could also have variable geometric symmetrical patterns, e.g., cellular, pentagonal, or hexagonal cellular. The existence of such distinctive microstructures in SLM-made alloys has a significant impact on their superior mechanical and corrosion properties. Thus, any modification of this symmetrical microstructure (due to post-processing) can degrade or improve the properties of SLM-fabricated alloys. This study presents the experimental results on the effects of heat treatment and ECAP on microstructure modification and corrosion behavior of SLM-fabricated AlSi10Mg alloy. Light microscopy, scanning electron microscopy (SEM), electron backscattered diffraction (EBSD), and X-ray diffraction (XRD) were used for microstructural analysis. The corrosion properties of the given samples were determined using open-circuit potential (OCP), potentiodynamic polarization, and electrochemical impedance spectroscopy (EIS) techniques. EBSD observations showed that the imposed strain resulted in an obvious reduction in grain size to ~1.42 µm and ~0.24 µm after the first and second ECAP passes, respectively. Electrochemical tests revealed that the corrosion resistance of the ECAP-processed AlSi10Mg alloy improved significantly, which was confirmed by a nobler Ecorr and lower Icorr values, and higher polarization resistance. The final results indicated that the strain-induced crystalline defects provided more nucleation sites for the formation of a denser and thicker oxide film, thus enhancing the corrosion resistance of the AlSi10Mg alloy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.