Abstract

The novel Mg-8.2Gd-3.8Y-1.0Zn-0.4Zr alloy with high content of rare earth elements has been processed successfully by high pressure torsion (HPT) starting from an as-cast condition. HPT processing was conducted at room temperature for a range of turns from 1/8 to 16, and the evolutions of microstructure and microhardness were investigated. The average grain size decreases from ~85µm in the as-cast condition to ~55nm when the equivalent strain reaches ~6.0, and remains almost constant on further strain increase. Meanwhile, the coarse netlike Mg3(Gd,Y) second phase structures are gradually broken into fine dispersed particles and the dislocation density increases. The microhardness of the alloy increases with increasing strain, and when the equivalent strain reaches ~6.0, the microhardness reaches a saturated value of about 115 HV, which is higher than that obtained by conventional extrusion/rolling of this alloy. The full range of possible mechanisms of hardening are analyzed and this reveals that hardening is primarily due to the pronounced grain refinement, which is substantially stronger than that for HPT-processed conventional Mg alloys, and to the homogeneously distributed fine second phase particles and the high dislocation density.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.