Abstract

The isotopic composition and parameters for deuterium excess of brines, which were sampled in the Sichuan Basin, show obvious regularities of distribution. The brine isotopic composition shows distinct two systems of marine and terrestrial deposits, with the Middle Triassic strata as the boundary. Brine hydrogen isotopic composition of marine deposits is lower while oxygen isotopic composition is higher than that of the SMOW, respectively, indicating that the brines were derived from seawater with different evaporating degrees at different times. From the Sinian strata, up to the Cambrian, Permian Maokou Formation and the Triassic Jialingjiang Formation, the δD values of brines tend to become relatively positive with the strata becoming younger. Brines of terrestrial deposits are considered to have been derived from precipitation and their isotopic composition is close to the globe meteoric water line (GMWL). Brines of transitional deposits between marine and terrestrial ones (the Upper Triassic Xujiahe Formation) have δD and δ18O values falling between the two end members of marine deposit brines and precipitation, indicating that the brines are a mixture of precipitation and vaporing seawater. Water samples from the brine-bearing strata of different ages show various deuterium excesses (d) with an evident decreasing trend as the age of strata gets older and older. Brine-bearing strata of the Triassic Leikoupo-Jialingjiang Formation, the Permian Maokou Formation, the Cambrian and Sinian strata are all carbonate rocks which have experienced intensive water/rock reaction and the deuterium excess essentially changes with time. All brine-bearing-strata surrounding the basin or faults, as well as those brine wells exploited for resources, have been obviously influenced by the precipitation supply. Therefore, the deuterium excesses of their brines have increased to different extents, depending on the amount of involvement of meteoric water. The variation and distribution of d values of the brines from different Triassic strata are related to the embedded depth of the strata. The deuterium excesses of brines become lower with increasing burial depth of the strata.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.