Abstract

The complete classification of solutions to the defocusing complex modified Korteweg-de Vries (cmKdV) equation with the step-like initial condition is given by Whitham theory. The process of studying the solution of cmKdV equation can be reduced to explore four quasi-linear equations, which predicts the evolution of dispersive shock wave. The results obtained here are quite different from the defocusing nonlinear Schrodinger equation: the bidirectionality of defocusing nonlinear Schrodinger equation determines that there are two basic rarefaction and shock structures while in the cmKdV case three basic rarefaction structures and four basic dispersive shock structures are constructed which lead to more complicated classification of step-like initial condition, and wave patterns even consisted of six different regions while each of wave patterns is consisted of five regions in the defocusing nonlinear Schrodinger equation. Direct numerical simulations of cmKdV equation are agreed well with the solutions corresponding to Whitham theory.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.