Abstract
Kinetic Monte Carlo simulations have been used to investigate mechanisms for boron clustering in crystalline and preamorphized Si. We have extended previous boron-interstitial cluster models to include larger and more stable complexes in order to reproduce boron cluster evolution at very high boron concentrations. We have investigated the stoichiometry of boron-interstitial clusters resulting from low temperature recrystallization of preamorphized layers. We have performed a dedicated experiment based on boron implanted into preamorphized Si with end-of-range defects placed far enough from the boron profile to avoid the interaction between end-of-range defects and resulting boron-interstitial clusters after recrystallization. Hall measurements on active B dose combined with a systematic analysis performed by Kinetic Monte Carlo simulations indicate that initial boron-interstitial clusters after recrystallization should not contain a high amount of Si interstitials. Otherwise, boron deactivation and subsequent reactivation will occur faster than experimentally observed. The present results suggest B 3 and B 3I clusters as the most probable configurations after recrystallization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.