Abstract

We study the nonlinear evolution of the spherical symmetric black holes under a small neutral scalar field perturbation in Einstein-Maxwell-dilaton theory with coupling function $f(\phi)=e^{-b\phi}$ in asymptotic anti-de Sitter spacetime. The non-minimal coupling between scalar and Maxwell fields allows the transmission of the energy from the Maxwell field to the scalar field, but also behaves as a repulsive force for the scalar. The scalar field oscillates with damping amplitude and converges to a final value by a power law. The irreducible mass of the black hole increases abruptly at initial times and then saturates to the final value exponentially. The saturating rate is twice the decaying rate of the dominant mode of the scalar. The effects of the black hole charge, the cosmological constant and the coupling parameter on the evolution are studied in detail. When the initial configuration is a naked singularity spacetime with a large charge to mass ratio, a horizon will form soon and hide the singularity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.