Abstract

We present a survey on several mass transportation problems, in which a given mass dynamically moves from an initial configuration to a final one. The approach we consider is the one introduced by Benamou and Brenier in [5], where a suitable cost functional $F(\rho,v)$, depending on the density $\rho$ and on the velocity $v$ (which fulfill the continuity equation), has to be minimized. Acting on the functional $F$ various forms of mass transportation problems can be modeled, as for instance those presenting congestion effects, occurring in traffic simulations and in crowd motions, or concentration effects, which give rise to branched structures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.