Abstract

Due to the complexity of friction materials, the characterization of the tribological properties is prioritised over the bulk material properties even though the tribology is expected to be influenced by the material behaviour. The extent of this relationship is still unknown and further knowledge is required to account for the load history and evolution of the bulk properties. With this view, the compression behaviour and microstructure of a semi-metallic friction material with reduced formulation were investigated before and after a braking program. The thermal loading was monitored with inserted thermocouples. Uniaxial compression tests coupled with Digital Image Correlation (DIC) show significant changes in the worn material, which develops a compression behaviour similar to that of a tri-layered material. The microstructural analysis indicates microcracking of the metallic matrix and carbon diffusion in the Fe-phase. The thermal loading was found to be the key parameter controlling both the friction behaviour and evolution of the material properties. The expected effects of material evolution on the contact uniformity, durability and tribology are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.